
A Comparative Study: MongoDB vs

MySQL

Mr. Sushil Soni ,Mr. Mayuresh Ambavane ,Mr. Shamal Ambre , Mr. Shirshendu Maitra

Abstract-The relational database has been the foundation of enterprise applications for decades, and since MySQL’s release in
1995 it has been a popular and inexpensive resource. Yet with the explosion in the volume and variety of data, recently non-
relational database technologies like MongoDB have emerged to address the needs of new applications. MongoDB is not only used
for new applications but also to augment or replace existing relational infrastructure.

In this paper we will try to show case a comparative study of non-relational databases and relational databases. We mainly
emphasis our presentation on one application of the NoSQL database technology, known as MongoDB, and make a comparison
with another application of relational databases, known as MySQL, and thus justifying why MongoDB is more efficient than MySQL.
We will also present the benefits of using a non-relational database compared to a relational database. A comparison criterion
includes theoretical differences, characteristics, limitation, integrity, distribution, system requirements, and architecture, query and
insertion times.

Index Terms— MySQL, MongoDB, NoSQL, RDBMS

 1 INTRODUCTION
 A few years back an application normally only

used to have thousands of users to tens of

thousands of users in the most extreme case,

nowadays there are applications that have millions

of users and who are connected day-and-night,

year in and year out. It is important to use an

appropriate database, which supports

simultaneous connection of hundreds of thousands

users.

 Relational databases are globally used in most of

the applications and they have good performance

when they hand le a limited amount of data. To

handle a large volume of data like internet,

multimedia and social media the use of traditional

relational databases is ineffective. To overcome this

problem the “NO SQL” term was introduced. The

NoSQL term was used by Carlo Strozzi in year

1998 and refers to non relational databases, term

which was later reintroduced in 2009 by Eric

Evans. Nowadays, the term has received another

meaning, namely "Not Only SQL", which is a

lenient variant of defining the term, compared to

its previous significance, the anti-relational.

 NoSQL, is not a tool, but a methodology

composed of several interdependent and

competing tools. The primary benefit of a NoSQL

database is that, unlike a relational database it is

able to handle unstructured data such as

documents, email, multimedia and social media

efficiently. Non relational databases d o not use the

RDBMS principles (Relational Database

Management System) and don’t store data in

tables, schema isn’t fixed and have very simple

data model. Instead , they use identification keys

and data can be found from the keys assigned.

 There are four strategies for storing data in a

non-relational database, as shown in, and they are

as follows:

 1. Key-Value - Key-Value databases are

conceptual d istributed d ictionaries and don’t have

a predefined schema; they are schema less. The key

can be synthetic or self-generated , and the value is

able to be anything: string, JSON, BLOB and

others.

 2. Document - MongoDB is the most popular

document based databases. They are flexible in the

type of content because they don’t have a

predefined schema. Conceptually, they work well

with documents of many d ifferent types such as

JSON, BSON, XML and BLOBs. Basically they

represent only a specialization of key-value

databases. A document is written or read using a

key. Besides the range of capabilities Key-Value,

document based databases add d ifferent

opportunities to find documents based on their

content.

 3. Column/ Field – Databases from BigTable

category, like HBase and Hypertable are columnar

type and should have a predefined schema. Data is

stored in cells grouped in columns, and the

columns are logically grouped into groups of

columns. Hypothetically, they can contain an

unlimited number (limited depending on the

application) of columns that can be generated at

runtime or at schema definition.

 4. Graph-Oriented – This strategy can help

complex data queries which are also performed in

an approximately smaller interval of time

compared to other databases using the strategies

proposed above.

 Also, non-relational databases provide high

flexibility at insertion or deletion of an attribute

from the database because they don’t have a fixed

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

120

IJSER © 2017
http://www.ijser.org

IJSER

database schema. Based on the requirement of the

application, we can make use of d ifferent type of

NoSQL database and each NoSQL database has its

own functions, data model and architecture

options of the database depends on the

application.

 In this paper we concentrate on one of the

NoSQL technologies, namely MongoDB, and make

a comparison with MySQL to highlight why

MongoDB is more capable than MySQL. In

addition, we will present the benefits of using a

non-relational database in a various application,

using MongoDB as the NoSQL database.

 2 OVERVIEW OF MongoDB
 MongoDB is a schema less document-oriented

database. The name MongoDB comes from

“humongous”. The database is written in C++ and

is intended to be scalable. The primary reason for

moving away from relational model is to make

scaling easier. The fundamental idea is to replace

the concept of a “row” with a more flexible model;
the “document”. By making use of embedded
documents and arrays, this perspective makes it

possible to represent complex hierarchical

relationship with a single record . MongoDB is also

schema free i.e. a document’s keys are not
predefined or fixed

 MongoDB provides high performance, high

operability, high availability, and easy scalability.

MongoDB works on fundamental idea of collection

and document.

Database: - Database is a physical, real-time

container for collections. Each and every database

gets its own unique set of files on the file system. A

particular MongoDB server generally has multiple

databases.

Collection: - Collection is a set of MongoDB

documents. It is similar to an RDBMS table. A

collection operates w ithin a single database.

Collections don’t enforce a schema. Documents

within a collection can have many d ifferent fields.

Generally, each and every document in a collection

is of similar or related motive.

Document: - A document is a set of key-value

pairs. Document have dynamic schema. Dynamic

schema means that the documents in the same

collection don’t need to have the exact same set of

fields or columns or structu re, and common fields

in a collection's documents may hold many

different types of data.

 Data Design in MongoDB database holds a set of

collections. A collection has no pre-defined schema

such as tables, and stores data as documents.

BSON (objects like binary encoded JSON) are used

to store documents. A document is a set of fields

that can be thought of as a row or tuple in a

collection. It can contain complex structures like

lists, or even document. All documents have an ID

field , which is u sed as a primary key (field which

uniquely identifies each document) and each

collection can contain any type of document, but

queries and indexes can only be made against one

collection. MongoDB supports indexing over

embedded objects and arrays thus have a special

feature for arrays called “multikeys”. This
capability allows using an array as index, which

can then be used to search documents by their

associated tags. Figure 1 shows the structure of

MongoDB.

 Figure 1: STRUCTURE OF MongoDB

MongoDB has its own query language named

Mongo Query Language. To get certain documents

from a db collection, a query document is created

containing the fields that the desired documents

must match. For example,

 Insert Command
db.users.insert ({ user id:”xyz123”, age: 34,
status:”X”})
 Select Command

db.users.find ({ status:”X”, age: 34})

 Delete Command

db.users.remove ({ status:”X”})
 Drop Command

db.users.drop ()

3 COMPARISON OF MongoDB &
MySQL
 As per the detailed review of several p apers, a

comparative study is made between MongoDB and

MySQL based on their fundamental concept and

commands used for d ifferent operations.

A. Based on Terms / Concept

RDBMS MongoDB

Database Database

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

121

IJSER © 2017
http://www.ijser.org

IJSER

Table Collection

Row/Tuple Document

Column Field

Table Join Embedded

Documents

Primary Key

(explicitly)

Primary Key

(Default key _id

provided by

MongoDB

implicitly)

Group by Aggregation

Fixed schema

Schema less

B. Based on Schema Statements

 SQL schema

 MongoDB schema

CREATE Command

CREATE TABLE

teachers(

t_id Varchar(30),

age Number,

status char(1),

PRIMARY KEY(id))

db.teachers.insert(

{t_id :"abc123",age:55,

status : "A"})

DROP Command

DROP TABLE teachers

db.teachers.d rop()

INSERT Command

INSERT INTO

teachers(t_id , age,

status)

VALUES

("a123",45,"A")

db.teachers.insert(

{t_id :"a123",age:45,stat

us:“A”})

SELECT Command

SELECT t_id , status,

age

FROM teachers

db.teachers.find({

},{t_id :1,

status:"B",age:45 })

DELETE Command

DELETE FROM

teachers

WHERE status ="D"

db.teachers.remove({

status:"D" })

C. Based on Performance
Several other research paper authors have

performed testing and thus have compared

MongoDB with MySQL database. They have

performed testing by using the textbook

management system. The given graph shows the

result of testing. In performance testing, the

authors have inserted 100 to 50,000 textbooks

information into database. The cost time for

MongoDB and MySQL were recorded as shown in

figure. Two important factors for which MongoDB

was preferred over MySQL are:

Insertion Speed

From the graph, we can see that MongoDB spends

less time than MySQL, for a large amount of

information as shown in figure2. It leaves

MongoDB 30× to 50× faster than MySQL as sown

in figur3.

 Figure 2: INSERTION SPEED COMPARISONS

 Figure 3: INSERTION TIME FOR MySQL AND

MongoDB

 Query Speed

In the figure 4, it calculates the time to get the data

out of the database. MongoDB leads MySQL with

almost 3× performance as shown in figure 5, 6. But

MongoDB spends much more time on problem

solving as well as the post maintenance issues and

is not easier than MySQL. Thus from above

comparison; it proves that for large amount of data

MongoDB is preferred over MySQL.

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

122

IJSER © 2017
http://www.ijser.org

IJSER

 Figure 4: QUERY SPEED COMPARISONS

 Figure 5: BASIC QUERY TIME FOR MySQL AND MongoDB

Figure 6: COMPLEX QUERY TIME FOR MySQL AND MongoDB

 4 CONCLUSION
 RDBMS won’t go away, they’re still definitely
needed. But the storage requirements for the new

generation of applications are largely d ifferent

from legacy applications. We can choose MongoDB

instead of MySQL because of two factors, ease of

use and performance. We conclude that if your

application is data intensive and stores lots of data,

queries lots of data, and usually lives and breathes

by its data, then you’d better do that efficiently or
have resources (i.e. money) to burn. Lastly, the

report concludes by proposing a database

integration method by using a middleware

between the two layers. In this method, application

does not have to consider about the complexity of

underlying database layer there data d istribution

and storage. They have to use the basic SQL query

language to get result from the database and all the

format conversion ru les will be done by the

Metadata. The system was proposed because

MongoDB has newly come into existence, whereas

the standard SQL language has been over years

and, therefore if we merge the two we can use the

features of both the database. Although, NoSQL

has the advantage of horizontal expansion, but for

complex SQL requests, it cannot support them very

well. For the Query based on KEY/ VALUE and

massive data storage requirements, NOSQL is a

good choice.

5 REFERENCES
[1] SQL Support over MongoDB using Metadata

Sanobar Khan*, Prof.Vanita Mane**

[2] Bogdan George Tudorica, Cristian Bucur, “A Comparison
between several NoSQL Databases with comments and

notes”

 [3] Jing Han, Haihong E, Guan Le, “Survey on NoSQL
Database”, IEEE 978-1-4577-0208-2,2011

[4] Neal Levitt, “Will NoSQL Databases Live Up to Their
Promise?” IEEE Computer Society, vol.43, no.2, pp.12-14,

Feb.2010

[5] A Comparative Study: MongoDB vs. MySQL Conference

Paper · June 2015 DOI: 10.13140/ RG.2.1.1226.7685

[6] A comprehensive comparison of SQL and MongoDB

databases by Rajat Aghi, Sumeet Mehta, Rahul Chauhan,

Siddhant Chaudhary and Navdeep Bohra

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017
ISSN 2229-5518

123

IJSER © 2017
http://www.ijser.org

IJSER

